CIS Primer Question 1.5.2
Here are my solutions to question 1.5.2 of Causal Inference in Statistics: a Primer (CISP).
I’ll use different indexing to make the notation clearer. In particular, the indices will match the values of the conditioning variables.
Part a
The full joint probability is
P(x,y,z)=P(z)⋅P(x∣z)⋅P(y∣x,z)
using the decomposition formula. Each factor is given by
P(z)=zr+(1−z)(1−r)P(x∣z)=xqz+(1−x)(1−qz)P(y∣x,z)=ypx,z+(1−y)(1−px,z)
where each parameter is assumed to have support on {0,1}.
The marginal distributions are given by
P(x,z)=P(x∣z)⋅P(z)P(y,z)=P(0,y,z)+P(1,y,z)P(x,y)=P(x,y,0)+P(x,y,1)=ypx,0+(1−y)(1−px,0)+ypx,1+(1−y)(1−px,1)=y(px,0+px,1)+(1−y)(2−px,0−px,1).
Furthermore,
P(x)=∑zP(x∣z)P(z)=∑z(xqz+(1−x)(1−qz))(zr+(1−z)(1−r))
so that
P(X=0)=(1−q0)(1−r)+(1−q1)rP(X=1)=q0(1−r)+q1r
Part b
The increase in probability from taking the drug in each sub-population is:
- P(y=1∣x=1,z=0)−P(y=1∣x=0,z=0)=p1,0−p0,0; and
- P(y=1∣x=1,z=1)−P(y=1∣x=0,z=1)=p1,1−p0,1.
In the whole population, the increase is P(Y=1∣X=1)−P(Y=1∣X=0), calcualted via
1∑z=0P(Y=1,Z=z∣X=1)−P(Y=1,Z=z∣X=0)=1∑z=0P(X=1,Y=1,Z=z)P(X=1)−P(X=0,Y=1,Z=z)P(X=0)=(1−r)q0p1,0+rq1p1,1q0(1−r)+q1r−(1−r)(1−q0)p0,0+r(1−q1)p0,1(1−q0)(1−r)+(1−q1)r
Part c
There’s no need to be smart about this. Let’s just simulate lots of values and find some combination with a Simpson’s reversal. We’ll generate a dataset with a positive probability difference in each sub-population, then filter out anything that also has a non-negative population difference.
set.seed(8168)
N <- 10000
part_c <- tibble(
id = 1:N %>% as.integer(),
r = rbeta(N, 2, 2), # P(Z = 1)
q0 = rbeta(N, 2, 2), # P(X = 1 | Z = 0)
q1 = rbeta(N, 2, 2), # P(X = 1 | Z = 1)
p00 = rbeta(N, 2, 2), # P(Y = 1 | X = 0, Z = 0)
p10 = rbeta(N, 2, 2) * (p00 - 1) + 1, # P(Y = 1 | X = 1, Z = 0)
p01 = rbeta(N, 2, 2), # P(Y = 1 | X = 0, Z = 1)
p11 = rbeta(N, 2, 2) * (p01 - 1) + 1, # P(Y = 1 | X = 1, Z = 1)
diff_pop = (p10 * q0 * (1 - r) + p11 * q1 * r) / (q0 * (1 - r) + q1 * r) - (p00 * (1 - q0) * (1 - r) + p01 * (1 - q1) * r) / ((1 - q0) * (1 - r) + (1 - q1) * r),
diff_z0 = p10 - p00,
diff_z1 = p11 - p01
)
As a check, there should be no rows with a non-positive difference.
check <- part_c %>%
filter(diff_z0 <= 0 | diff_z1 <= 0) %>%
nrow()
# throw error if there are rows
stopifnot(check == 0)
check
[1] 0
Now we simply throw away any rows with a non-negative population difference. Here is one combination of parameters exhibiting Simpson’s reversal.
simpsons_reversal <- part_c %>%
filter(diff_pop < -0.05) %>%
head(1) %>%
gather(term, value)
term | value |
---|---|
id | 109.0000000 |
r | 0.2837123 |
q0 | 0.0664811 |
q1 | 0.8468126 |
p00 | 0.8441892 |
p10 | 0.8827558 |
p01 | 0.5273831 |
p11 | 0.5816885 |
diff_pop | -0.1933634 |
diff_z0 | 0.0385666 |
diff_z1 | 0.0543054 |
As a final check, let’s generate a dataset for this set of parameters.
df <- simpsons_reversal %>%
spread(term, value) %>%
crossing(unit = 1:N) %>%
mutate(
z = rbinom(N, 1, r),
x = rbinom(N, 1, if_else(z == 0, q0, q1)),
p_y_given_x_z = case_when(
x == 0 & z == 0 ~ p00,
x == 0 & z == 1 ~ p01,
x == 1 & z == 0 ~ p10,
x == 1 & z == 1 ~ p11
),
y = rbinom(N, 1, p_y_given_x_z)
) %>%
select(unit, x, y, z)
The empirical joint probability distribution is as follows.
p_x_y_z <- df %>%
group_by(x, y, z) %>%
count() %>%
ungroup() %>%
mutate(p = n / sum(n))
x | y | z | n | p |
---|---|---|---|---|
0 | 0 | 0 | 1068 | 0.1068 |
0 | 0 | 1 | 197 | 0.0197 |
0 | 1 | 0 | 5609 | 0.5609 |
0 | 1 | 1 | 224 | 0.0224 |
1 | 0 | 0 | 52 | 0.0052 |
1 | 0 | 1 | 1016 | 0.1016 |
1 | 1 | 0 | 400 | 0.0400 |
1 | 1 | 1 | 1434 | 0.1434 |
The population-level probability difference is given by:
diff_pop <- p_x_y_z %>%
group_by(x) %>%
summarise(p = sum(n * y) / sum(n)) %>%
spread(x, p) %>%
mutate(diff = `1` - `0`)
0 | 1 | diff |
---|---|---|
0.8217808 | 0.6319779 | -0.1898028 |
which is close to the theoretical value.
Similarly, the sub-population differences are
diff_z <- p_x_y_z %>%
group_by(x, z) %>%
summarise(p = sum(n * y) / sum(n)) %>%
spread(x, p) %>%
mutate(diff = `1` - `0`)
z | 0 | 1 | diff |
---|---|---|---|
0 | 0.8400479 | 0.8849558 | 0.0449078 |
1 | 0.5320665 | 0.5853061 | 0.0532396 |
which are also close to the theoretical values we calculated. More importantly, they have a different sign to the population difference, confiming that we have case of Simpson’s reversal.