CIS Primer Question 1.5.2
Here are my solutions to question 1.5.2 of Causal Inference in Statistics: a Primer (CISP).
I’ll use different indexing to make the notation clearer. In particular, the indices will match the values of the conditioning variables.
Part a
The full joint probability is
\[ \mathbb P(x, y, z) = \mathbb P (z) \cdot \mathbb P (x \mid z) \cdot \mathbb P (y \mid x, z) \]
using the decomposition formula. Each factor is given by
\[ \begin{align} \mathbb P (z) &= z r + (1 - z) (1 - r) \\ \mathbb P (x \mid z) &= xq_z + (1 - x)(1 - q_z) \\ \mathbb P (y \mid x, z) &= yp_{x, z} + (1 - y)(1 - p_{x, z}) \end{align} \]
where each parameter is assumed to have support on \(\{0, 1\}\).
The marginal distributions are given by
\[ \begin{align} \mathbb P(x, z) &= \mathbb P(x \mid z) \cdot \mathbb P (z) \\ \mathbb P(y, z) &= \mathbb P(0, y, z) + \mathbb P(1, y, z) \\ \mathbb P(x, y) &= \mathbb P(x, y, 0) + \mathbb P(x, y, 1) \\ &= yp_{x, 0} + (1 - y)(1 - p_{x, 0}) + yp_{x, 1} + (1 - y)(1 - p_{x, 1}) \\ &= y (p_{x, 0} + p_{x, 1}) + (1 - y)(2 - p_{x, 0} - p_{x, 1}) . \end{align} \]
Furthermore,
\[ \begin{align} \mathbb P (x) &= \sum_z \mathbb P(x \mid z) \mathbb P (z) \\ &= \sum_z (xq_z + (1 - x)(1 - q_z))(zr + (1 - z)(1 - r)) \end{align} \]
so that
\[ \begin{align} \mathbb P(X = 0) &= (1 - q_0)(1 - r) + (1 - q_1)r \\ \mathbb P(X = 1) &= q_0(1 - r) + q_1r \end{align} \]
Part b
The increase in probability from taking the drug in each sub-population is:
- \(\mathbb P(y = 1 \mid x = 1, z = 0) - \mathbb P(y = 1 \mid x = 0, z = 0) = p_{1, 0} - p_{0, 0}\); and
- \(\mathbb P(y = 1 \mid x = 1, z = 1) - \mathbb P(y = 1 \mid x = 0, z = 1) = p_{1, 1} - p_{0, 1}\).
In the whole population, the increase is \(\mathbb P(Y = 1 \mid X = 1) - \mathbb P(Y = 1 \mid X = 0)\), calcualted via
\[ \begin{align} & \sum_{z = 0}^1 \mathbb P(Y = 1, Z = z \mid X = 1) - \mathbb P(Y = 1, Z = z \mid X = 0) \\ &= \sum_{z = 0}^1 \frac{\mathbb P(X = 1, Y = 1, Z = z)}{\mathbb P(X = 1)} - \frac{\mathbb P(X = 0, Y = 1, Z = z)}{\mathbb P(X = 0)} \\ &= \frac{(1 - r)q_0p_{1, 0} + rq_1p_{1, 1}}{q_0(1 - r) + q_1r} - \frac{(1 - r)(1 - q_0)p_{0, 0} + r(1 - q_1)p_{0, 1}}{(1 - q_0)(1 - r) + (1 - q_1)r} \end{align} \]
Part c
There’s no need to be smart about this. Let’s just simulate lots of values and find some combination with a Simpson’s reversal. We’ll generate a dataset with a positive probability difference in each sub-population, then filter out anything that also has a non-negative population difference.
set.seed(8168)
N <- 10000
part_c <- tibble(
id = 1:N %>% as.integer(),
r = rbeta(N, 2, 2), # P(Z = 1)
q0 = rbeta(N, 2, 2), # P(X = 1 | Z = 0)
q1 = rbeta(N, 2, 2), # P(X = 1 | Z = 1)
p00 = rbeta(N, 2, 2), # P(Y = 1 | X = 0, Z = 0)
p10 = rbeta(N, 2, 2) * (p00 - 1) + 1, # P(Y = 1 | X = 1, Z = 0)
p01 = rbeta(N, 2, 2), # P(Y = 1 | X = 0, Z = 1)
p11 = rbeta(N, 2, 2) * (p01 - 1) + 1, # P(Y = 1 | X = 1, Z = 1)
diff_pop = (p10 * q0 * (1 - r) + p11 * q1 * r) / (q0 * (1 - r) + q1 * r) - (p00 * (1 - q0) * (1 - r) + p01 * (1 - q1) * r) / ((1 - q0) * (1 - r) + (1 - q1) * r),
diff_z0 = p10 - p00,
diff_z1 = p11 - p01
)
As a check, there should be no rows with a non-positive difference.
check <- part_c %>%
filter(diff_z0 <= 0 | diff_z1 <= 0) %>%
nrow()
# throw error if there are rows
stopifnot(check == 0)
check
[1] 0
Now we simply throw away any rows with a non-negative population difference. Here is one combination of parameters exhibiting Simpson’s reversal.
simpsons_reversal <- part_c %>%
filter(diff_pop < -0.05) %>%
head(1) %>%
gather(term, value)
term | value |
---|---|
id | 109.0000000 |
r | 0.2837123 |
q0 | 0.0664811 |
q1 | 0.8468126 |
p00 | 0.8441892 |
p10 | 0.8827558 |
p01 | 0.5273831 |
p11 | 0.5816885 |
diff_pop | -0.1933634 |
diff_z0 | 0.0385666 |
diff_z1 | 0.0543054 |
As a final check, let’s generate a dataset for this set of parameters.
df <- simpsons_reversal %>%
spread(term, value) %>%
crossing(unit = 1:N) %>%
mutate(
z = rbinom(N, 1, r),
x = rbinom(N, 1, if_else(z == 0, q0, q1)),
p_y_given_x_z = case_when(
x == 0 & z == 0 ~ p00,
x == 0 & z == 1 ~ p01,
x == 1 & z == 0 ~ p10,
x == 1 & z == 1 ~ p11
),
y = rbinom(N, 1, p_y_given_x_z)
) %>%
select(unit, x, y, z)
The empirical joint probability distribution is as follows.
p_x_y_z <- df %>%
group_by(x, y, z) %>%
count() %>%
ungroup() %>%
mutate(p = n / sum(n))
x | y | z | n | p |
---|---|---|---|---|
0 | 0 | 0 | 1068 | 0.1068 |
0 | 0 | 1 | 197 | 0.0197 |
0 | 1 | 0 | 5609 | 0.5609 |
0 | 1 | 1 | 224 | 0.0224 |
1 | 0 | 0 | 52 | 0.0052 |
1 | 0 | 1 | 1016 | 0.1016 |
1 | 1 | 0 | 400 | 0.0400 |
1 | 1 | 1 | 1434 | 0.1434 |
The population-level probability difference is given by:
diff_pop <- p_x_y_z %>%
group_by(x) %>%
summarise(p = sum(n * y) / sum(n)) %>%
spread(x, p) %>%
mutate(diff = `1` - `0`)
0 | 1 | diff |
---|---|---|
0.8217808 | 0.6319779 | -0.1898028 |
which is close to the theoretical value.
Similarly, the sub-population differences are
diff_z <- p_x_y_z %>%
group_by(x, z) %>%
summarise(p = sum(n * y) / sum(n)) %>%
spread(x, p) %>%
mutate(diff = `1` - `0`)
z | 0 | 1 | diff |
---|---|---|---|
0 | 0.8400479 | 0.8849558 | 0.0449078 |
1 | 0.5320665 | 0.5853061 | 0.0532396 |
which are also close to the theoretical values we calculated. More importantly, they have a different sign to the population difference, confiming that we have case of Simpson’s reversal.